
Introduction to Deep
Learning (I2DL)

Tutorial 9: Facial Keypoint Detection

1

Overview

• Exercise 08: Case Study

• Fully Connected & Convolutional Layers
– Recap
– Changes to Dropout & BatchNorm

• Exercise 09: Facial Keypoint Detection

2

3

Exercise 8: Leaderboard

CNN

MLP

Exercise 8: Case Study - Architecture

4

self.encoder = nn.Sequential(
nn.Linear(input_size, num_hidden), # 784 -> 392
nn.BatchNorm1d(num_hidden),
nn.ReLU(),
nn.Linear(num_hidden, int(num_hidden*0.5)),
nn.BatchNorm1d(int(num_hidden*0.5)),
nn.ReLU(),
nn.Linear(int(num_hidden*0.5), int(num_hidden*0.25)),
nn.BatchNorm1d(int(num_hidden*0.25)),
nn.ReLU(),
nn.Linear(int(num_hidden*0.25), int(num_hidden*0.125)),
nn.BatchNorm1d(int(num_hidden*0.125)),
nn.ReLU(),
nn.Linear(int(num_hidden*0.125), latent_dim))

self.decoder = nn.Sequential(
nn.Linear(latent_dim, int(num_hidden*0.125)),
nn.BatchNorm1d(int(num_hidden*0.125)),
nn.ReLU(),
nn.Linear(int(num_hidden*0.125), int(num_hidden*0.25)),
nn.BatchNorm1d(int(num_hidden*0.25)),
nn.ReLU(),
nn.Linear(int(num_hidden*0.25), int(num_hidden*0.5)),
nn.BatchNorm1d(int(num_hidden*0.5)),
nn.ReLU(),
nn.Linear(int(num_hidden*0.5), num_hidden),
nn.BatchNorm1d(num_hidden),
nn.ReLU(),
nn.Linear(num_hidden, input_size))

self.classifier = nn.Sequential(
nn.Linear(latent_dim, num_hidden_c),
nn.BatchNorm1d(num_hidden_c),
nn.LeakyReLU(),
nn.Dropout(p=0.2),
nn.Linear(num_hidden_c, num_hidden_c),
nn.BatchNorm1d(num_hidden_c),
nn.LeakyReLU(),
nn.Dropout(p=0.2),
nn.Linear(num_hidden_c, num_classes))

Paramters: Your model has 0.591 mio. params

Paramters: Your model has 0.824 mio. paramsAE

CLS

Exercise 8: Case Study – Hyper-Parameters

5

transform = T.Compose([
T.RandomApply([T.RandomRotation(degrees=30)], p=0.2),
T.RandomApply([T.GaussianBlur(kernel_size=3, sigma=(0.1, 1.5))], p=0.2),
T.RandomApply([T.RandomAffine(degrees=0, translate=(0.08, 0.08))], p=0.2),

])

hparams = {
"n_hidden": 392,
"latent_dim": 32,
"n_hidden_C": 400,
"learning_rate": 5e-4,
"weight_decay": 1e-4,
"epochs_ae": 5,
"epochs_classifier": 50

}Auto-Encoder Reconstructions

Fully Connected
vs

Convolutional Layers

6

Recap: Fully Connected Layers
• Fully Connected (FC) networks / Multi-Layer Perceptron

(MLP): Receive an input vector and transform it through a
series of hidden layers (weights & activation functions).

• Fully Connected layers: Each layer is made up of a set of
neurons, where each single neuron is connected to all
neurons in the previous layer

7

Computer Vision – MLP

• Assumption: Input to the network are images
• Disadvantage: Images need to have a certain

resolution to contain enough information

8

238x238

5x5

Can we reduce the number of
weights in our architecture?

Image Image

Computer Vision - CNN

• Assumption: Input to the network are images
• Idea: Sliding filter over the input image (convolution)

instead of passing the entire image through all
neurons individually

9

Computer Vision - CNN

• Assumption: Input to the network are images
• Filters: Sliding window with the same filter

parameters to extract image features
• Advantage: Learn translation-invariant “concepts”

and weight sharing

10

Convolution: Hard-coded

11

[-1, -1, -1]
[0, 0, 0]
[1, 1, 1]

[-1, 0, 1]
[-1, 0, 1]
[-1, 0, 1]

3x3 kernel 3x3 kernel

* *

Convolutional Layers:
BatchNorm and Dropout

12

Fully Connected vs Convolution

http://graphics.stanford.edu/courses/cs468-17-spring/LectureSlides/L10%20-%20intro_to_deep_learning.pdf

• Output Fully-Connected layer: One layer of neurons, independent
• Output Convolutional Layer: Neurons arranged in 3 dimensions

13

Recap: Batch Normalization

• Batch norm for FC neural networks
– Input size (N, D)
– Compute minibatch mean and variance across N (i.e. we

compute mean/var for each feature dimension)

14http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture07.pdf

Recap: Batch Normalization

• Batch norm for FC neural networks
– Input size (N, D)
– Compute minibatch mean and variance across N (i.e. we

compute mean/var for each feature dimension)

http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture07.pdf 15

Spatial Batch Normalization

• Batchnorm for convolutional NN = spatial batchnorm
– Input size (N, C W, H)
– Compute minibatch mean and variance across N, W, H (i.e.

we compute mean/var for each channel C)

http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture07.pdf 16

Spatial Batch Normalization
Convolutional = spatial BN
– Input size (N, C, W, H)
– Compute minibatch mean and

variance across N, W, H (i.e. we
compute mean/var for each
channel C)

http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture07.pdf 17

Fully Connected
– Input size (N, D)
– Compute minibatch mean and

variance across N (i.e. we compute
mean/var for each feature
dimension)

Other normalizations

http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture07.pdf 18

Dropout for convolutional layers

• Regular Dropout: Deactivating specific neurons in the
networks (one neuron “looks” at whole image)

• Dropout Convolutional Layers: Standard neuron-
level dropout (i.e. randomly dropping a unit with a
certain probability) does not
improve performance in
convolutional NN

• Spatial Dropout randomly
sets entire feature maps to zero

19

Dropout for convolutional layers

20

def dropout_mlp():
m = nn.Dropout(p=0.5)
batch_size = 1
inputs = torch.randn(batch_size, 3 * 5 * 5)
outputs = m(inputs)

print(outputs)

tensor([[
-0.89, 0.37, -0.00, 0.00, -0.08, -0.00,
0.00, -3.55, 0.00, 0.47, -0.00, 5.08,
-0.00, -0.00, 2.63, 0.00, 0.00, 0.00,
2.18, 1.92, -0.00, 0.66, 1.96, 0.00,
-0.00, -0.00, 0.00, 1.31, -1.95, -0.00,
0.00, -4.44, 0.00, -1.07, -0.90, -0.07,
-3.81, 0.00, 0.23, 2.38,-2.27, -0.51,
-3.32, -0.00, -0.65, 0.00, -0.00, -0.00,
-0.00, -0.00, -0.61, 0.00, 0.00, 0.00,
-1.85, -0.40, 0.00, 0.68, -0.00, -1.96,
-0.00, -1.65, 0.00, -0.66, 3.10, 0.00,
-0.00, 1.89, 0.00, -1.28,1.62, -0.56,
-0.00, -0.00, -0.99]])

def dropout_cnn():
m = nn.Dropout2d(p=0.5)
batch_size = 1
inputs = torch.randn(batch_size, 3, 5 * 5)
outputs = m(inputs)

print(outputs)

tensor([[
[0.03, 1.40, 1.76, -4.34, -0.63,
-0.31, 2.80, 2.72, -3.00, 2.67,
-2.31, -3.45, 0.95, 1.18, 1.18,
-1.05, 0.74, 3.56, 0.55, -1.19,
-0.28, 0.89, -3.36, -2.00, -0.29],

[0.00, -0.00, -0.00, -0.00, -0.00,
0.00, -0.00, -0.00, -0.00, 0.00,
-0.00, 0.00, 0.00, -0.00, -0.00,
0.00, -0.00, 0.00, 0.00, -0.00,
-0.00, 0.00, -0.00, 0.00, 0.00],

[0.00, -0.00, -0.00, -0.00, 0.00,
0.00, 0.00, 0.00, -0.00, -0.00,
-0.00, -0.00, 0.00, -0.00, -0.00,
0.00, 0.00, 0.00, -0.00, 0.00,
-0.00, -0.00, 0.00, 0.00, -0.00]]])

Exercise 9:
Facial Keypoints Detection

21

Submission: Facial Keypoints
Input:

(1, 96, 96) grayscale image

22

Output:
(2, 15) keypoint coordinates

Dataset:
- train: 1546 images

- validation: 298 images

CNN

Submission: Metric

23

Submission Requirement: Score >= 100

Accuracy (Classification) → Score (Regression)

Good luck &
see you next week

24

	幻灯片 1: Introduction to Deep Learning (I2DL)
	幻灯片 2: Overview
	幻灯片 3: Exercise 8: Leaderboard
	幻灯片 4: Exercise 8: Case Study - Architecture
	幻灯片 5: Exercise 8: Case Study – Hyper-Parameters
	幻灯片 6
	幻灯片 7: Recap: Fully Connected Layers
	幻灯片 8: Computer Vision – MLP
	幻灯片 9: Computer Vision - CNN
	幻灯片 10: Computer Vision - CNN
	幻灯片 11: Convolution: Hard-coded
	幻灯片 12
	幻灯片 13: Fully Connected vs Convolution
	幻灯片 14: Recap: Batch Normalization
	幻灯片 15: Recap: Batch Normalization
	幻灯片 16: Spatial Batch Normalization
	幻灯片 17: Spatial Batch Normalization
	幻灯片 18: Other normalizations
	幻灯片 19: Dropout for convolutional layers
	幻灯片 20: Dropout for convolutional layers
	幻灯片 21
	幻灯片 22: Submission: Facial Keypoints
	幻灯片 23: Submission: Metric
	幻灯片 24

