TUTi

INntroduction to Deep
[earning (I2DL)

Tutorial 9: Facial Keypoint Detection

Overview

« EXxercise 08: Case Study

« Fully Connected & Convolutional Layers
- Recap
- Changes to Dropout & BatchNorm

« Exercise 09: Facial Keypoint Detection

0 0 W0 150 20 250

—xercise 8: |_.eaderboard

Exercise 1 Exercise 3 Exercise 4 Exercise 5 Exercise 6 Exercise 7 Exercise 8 Exercise @ Exercise 10 Exarcise 11

1 u0741 100.00 CNN
I 2 u1289 100.00 I MLP

3 u0736 99.00
A e e

5 u1770 96.00

6 u1479 95.00

7 u0922 94.00

8 u0926 91.00

9 u1662 90.00

10 u1149 89.00

11 u1625 88.00

12 u0533 88.00

Exercise 8: Case Study - Architecture

.encoder = nn.Sequential(

.Linear(input_size, num_hidden), # 784 -> 392
.BatchNormld(num_hidden),

.ReLU(),

.Linear(num_hidden, int(num_hidden*0.5)),
.BatchNormld(int(num_hidden*0.5)),

.ReLU(),

.Linear(int(num_hidden*@.5), int(num_hidden*@.25)),
.BatchNormld(int(num_hidden*0.25)),

.ReLU(),

.Linear(int(num_hidden*@.25), int(num_hidden*0.125)),
.BatchNormld(int(num_hidden*@0.125)),

.ReLU(),

.Linear(int(num_hidden*©.125), latent_dim))

.classifier = nn.Sequential(
.Linear(latent_dim, num_hidden c),
.BatchNormld(num_hidden c),
.LeakyRelLU(),

.Dropout(p=0.2),
.Linear(num_hidden_c, num_hidden_c),
.BatchNormld(num_hidden c),
.LeakyReLU(),

.Dropout(p=90.2),
.Linear(num_hidden_c, num_classes))

.decoder = nn.Sequential(

.Linear(latent _dim, int(num_hidden*@.125)),
.BatchNormld(int(num_hidden*0.125)),

.ReLU(),

.Linear(int(num_hidden*@.125), int(num_hidden*@.25)),
.BatchNormld(int(num_hidden*@.25)),

.ReLU(),

.Linear(int(num_hidden*@.25), int(num_hidden*@.5)),
.BatchNormld(int(num_hidden*0.5)),

.ReLU(),

.Linear(int(num_hidden*®©.5), num_hidden),
.BatchNormld(num_hidden),

.ReLU(),

.Linear(num_hidden, input_size))

Paramters: Your model has ©.824 mio. params

Paramters: Your model has ©.591 mio. params

Exercise 8. Case Study - Hyper-Parameters

hparams = {
"n_hidden": 392,
"latent_dim": 32,
"n_hidden_C": 400,

transform = T.Compose([
T.RandomApply([T.RandomRotation(degrees=30)], p=0.2),

T.RandomApply([T.GaussianBlur(kernel size=3, sigma=(0.1, 1.5))], p=90.2),
T.RandomApply([T.RandomAffine(degrees=0, translate=(0.08, 0.08))], p=0.2),

"learning_rate": 5e-4,
"weight_decay": le-4,
"epochs ae": 5,
"epochs_classifier": 50

D

Auto-Encoder Reconstructions

4/141o]\[3]a]5
6|4]1(0|0[¢c|2]|3
HEEERIEIS(S]
913191752137

Fully Connected
VS
Convolutional Layers

Recap: Fully Connected Layers

Fully Connected (FC) networks / Multi-Layer Perceptron
(MLP): Recelve an input vector and transform it through a
series of hidden layers (weights & activation functions).

Fully Connected layers: Each layer is made up of a set of
neurons, where each single neuron is connected to all
neurons in the previous layer

ARAN

T O

input layer
hidden layer 1 hidden layer 2

Computer Vision - MLP

Bead v,

* Assumption: Input to the network are images
» Disadvantage: Images need to have a certain

':'.--—-—,.‘b B }w;:-':_

resolution to contain enough information 238238
Image lmage v
75 weights 5
A\
; O 75 weights 1000 3 billion weights C'}\O\}\
&
O 75 weights \“\

3

3 neuron layer 1000 neuron layer

Can we reduce the number of
welghts in our architecture?

Computer Vision - CNN

« Assumption: Input to the network are images

« |dea: Sliding filter over the input image (convolution)
INnstead of passing the entire iImage through all
neurons individually

5x5x3 filter

Slide all spatial loc
and compute all output
w./0 padding, ther

28x28 locations

Computer Vision - CNN

« Assumption: Input to the network are images

« Filters: Sliding window with the same filter
parameters to extract image features

« Advantage: Learn translation-invariant ‘concepts’
and weight sharing

Let's apply “*five™ filters, rlﬁ

32 each with different weights!

Convolution: Hard-coded

3x3 kernel 3x3 kernel

Convolutional Layers:

BatchNorm and

Dropout

Fully Connected vs Convolution

« Output Fully-Connected layer: One layer of neurons, independent
« Output Convolutional Layer: Neurons arranged in 3 dimensions

inpul layer
hidden layer 1 hidden layer 2

http://graphics.stanford.edu/courses/cs468-17-spring/LectureSlides/L10%20-%20intro_to_deep_learning.pdf,

Recap: Batch Normalization

« RBatch norm for FC neural networks
— Input size (N, D)

- Compute minibatch mean and variance across N (e, we
compute mean/var for each feature dimension)

N
Input: +: N x D 1
M =75 chu
=1
Learnable params: | N
781D o= &3 oy)
=i,
,o:D i — I
Intermediates: By ;= Sl —HI
Z:NxD i \/ﬁ
7
Output: v : N x D Yij = Yidi,; + B;

http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture07.pdf

Recap: Batch Normalization

Batch norm for FC neural networks
— Input size (N, D)

- Compute minibatch mean and variance across N (e, we
compute mean/var for each feature dimension)

Batch Normalization for
fully-connected networks

x: N x D
Normalize |

H,0: 1 x D
Y,p: 1 x D

y = Y(x-M)/o+B

http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture07.pdf

Spatial Batch Normalization

« Batchnorm for convolutional NN - spatial batchnorm
— Input size (N, CW, H)

— Compute minibatch mean and variance across N, W, H (i.e.
we compute mean/var for each channel C)

X: NxCxHxW
Normalize # ¢ *
H,0: 1xCx1lxl -
Y,B: 1xCx1lx1l
y = Y(x-M)/0o+p

http.//cs231n.stanford.edu/slides/2018/cs231n_2018_lecture07 pdf 16

Fully Connected

Spatial Batch Normalization

Input size (N, D) —

Compute minibatch mean and —
variance across N (e, we compute
mean/var for each feature

dimension)
x: N x D
Normalize ¢
H,0: 1 x D
Y,p: 1 x D

y = Y(x-M)/o+p

Convolutional - spatial BN

Input size (N, C, W, H)

Compute minibatch mean and
variance across N, W, H (le. we
compute mean/var for each
channel C)

X: NxCxHxW
Normalize ¢ ¢ ¢
MH,0: 1xCx1lxl
Y,B: 1xCx1lxl
y = Y(x-M)/o+p

http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture07.pdf

Other normalizations

TR
RN
\AAANN\Z
AN AR A

Group Norm

A i A
P

M H

TAEE R
L T TR
AAAANNAZ
LT

Instance Norm

Layer Norm

Batch Norm

AN A Y
g gy O

http.//cs231n.stanford.edu/slides/2018/cs231n_2018_lecture07 pdf

Dropout for convolutional layers

Regular Dropout: Deactivating specific neurons in the
networks (one neuron "looks™ at whole image)

Dropout Convolutional Layers: Standard neuron-
level dropout (l.e. randomly dropping a unit with a
certain probability) does not
improve performance in
convolutional NN

Spatial Dropout randomly
sets entire feature maps to zero

Standard Dropout Spatial Dropout

="
EEEEEEEE

Dropout for convolutional layers

def dropout mlp():

m =i nn.Dropout(p=0.5)

batch size =

inputs = torch.randn{batch size, 3 * 5 * 5)
outputs = m(inputs)

print(outputs)

tensor([[
-0.89, ©0.37, -0.00, | 0.00,]-0.08, -0.00,
0.00, -3.55, ©0.00, 0.4/, -0.00, 5.08,
-0.00, -0.00, 2.63, 0.00, 0.00, 0.00,
2.18, 1.92, -0.00, 0.66, 1.96, 0.00,
-0.00, -0.00, ©0.00, 1.31, -1.95, -0.00,
0.00, -4.44, § 0.00,)-1.07, -0.90, -0.07,
-3.81, ©0.00, 0.23, 23 SHIE 2027/ =105 N
-3.32, -0.00, -0.65, .00, -0.00, -0.00,
-0.00, -0.00, -0.61, .00, 0.00,) 0.00,
aditn -0.40, 0.00, .68, -0.00, -1.96,
.008 -1.65, | 0. .66, 3.10, 0.00,
-0.00, 1.89, 0. .28,1.62, -0.56,
-0.00, -0.00, -0.

def dropout cnn():
m =fnn.Dropout2d(p=0.5)
batch size =
inputs = torch.randn(batch_size,
outputs = m(inputs)

print(outputs)

tensor([[

[©.03, 1.40, 1.76, -4.34,
-9.31, 2.80, 2.72, -3.00,
-2.31, -3.45, .95, 1.18,
-1.e5, .74, 3.56, 0.55,
7, 3 A _RQ -2 24 -2 00
[0.00, -0.00, -0.00, -0.00,
0.00, -0.00, -0.00, -0.00,
-0.00, ©0.00, 0.00, -0.00,
0.00, -0.00, 0.00, 0.00,
-0.00, ©0.00, -0.00, 0.00,
[0.00, -0.00, -0.00, -0.00,
0.00, ©0.00, 0.00, -0.00,
-0.00, -0.00, 0.00, -0.00,
0.00, ©0.00, 0.00, -0.00,
-0.00, -0.00, 0.00, 0.00,

3, 5 * 5)

-0.63,
2.67,
1.18,
-1.19,
_0 2091
-0.00,
0.00,
-0.00,
-0.00,
0.00],
0.00,
-0.00,
-0.00,
0.00,
-0.0011)

-Xerclse 9
Facial Keypoints Detection

Submission: Facial Keypoints

Input: Output:
(1, 96 96) grayscale image (2, 15) keypoint coordinates

40

Dataset.
- train: 1546 images
- validation: 298 images

Submission: Metric

Accuracy (Classification) > Score (Regression)

def evaluate_model(model, dataset):
101

criterion = torch.nn.MSELoss()
= y batch_size=1, shuffle=False)

loss = @

for batch in dataloader:
image, keypoints = batch["image"], batch["keypoints"]

redicted keypoints = model(image).view(-1,15,2)

loss += criterion(
torch.squeeze(keypoints),
torch.squeeze(predicted_keypoints)

T 1Teml)
returnIl.ﬂ / (2 * {1nssflen[dataluader}}}|

print("Score:", evaluate_model({dummy_model, val_dataset))

Submission Requirement: Score >= 100

TUTi

Good luck &
see you next week

©

	幻灯片 1: Introduction to Deep Learning (I2DL)
	幻灯片 2: Overview
	幻灯片 3: Exercise 8: Leaderboard
	幻灯片 4: Exercise 8: Case Study - Architecture
	幻灯片 5: Exercise 8: Case Study – Hyper-Parameters
	幻灯片 6
	幻灯片 7: Recap: Fully Connected Layers
	幻灯片 8: Computer Vision – MLP
	幻灯片 9: Computer Vision - CNN
	幻灯片 10: Computer Vision - CNN
	幻灯片 11: Convolution: Hard-coded
	幻灯片 12
	幻灯片 13: Fully Connected vs Convolution
	幻灯片 14: Recap: Batch Normalization
	幻灯片 15: Recap: Batch Normalization
	幻灯片 16: Spatial Batch Normalization
	幻灯片 17: Spatial Batch Normalization
	幻灯片 18: Other normalizations
	幻灯片 19: Dropout for convolutional layers
	幻灯片 20: Dropout for convolutional layers
	幻灯片 21
	幻灯片 22: Submission: Facial Keypoints
	幻灯片 23: Submission: Metric
	幻灯片 24

