
Introduction to Deep 
Learning (I2DL)

Tutorial 9: Facial Keypoint Detection
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Overview

• Exercise 08: Case Study

• Fully Connected & Convolutional Layers
– Recap
– Changes to Dropout & BatchNorm

• Exercise 09: Facial Keypoint Detection
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Exercise 8: Leaderboard

CNN

MLP



Exercise 8: Case Study - Architecture
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self.encoder = nn.Sequential(
nn.Linear(input_size, num_hidden),  # 784 -> 392 
nn.BatchNorm1d(num_hidden),
nn.ReLU(),
nn.Linear(num_hidden, int(num_hidden*0.5)),
nn.BatchNorm1d(int(num_hidden*0.5)),
nn.ReLU(),
nn.Linear(int(num_hidden*0.5), int(num_hidden*0.25)),
nn.BatchNorm1d(int(num_hidden*0.25)),
nn.ReLU(),
nn.Linear(int(num_hidden*0.25), int(num_hidden*0.125)),
nn.BatchNorm1d(int(num_hidden*0.125)),
nn.ReLU(),
nn.Linear(int(num_hidden*0.125), latent_dim))

self.decoder = nn.Sequential(
nn.Linear(latent_dim, int(num_hidden*0.125)),
nn.BatchNorm1d(int(num_hidden*0.125)),
nn.ReLU(),
nn.Linear(int(num_hidden*0.125), int(num_hidden*0.25)),
nn.BatchNorm1d(int(num_hidden*0.25)),
nn.ReLU(),
nn.Linear(int(num_hidden*0.25), int(num_hidden*0.5)),
nn.BatchNorm1d(int(num_hidden*0.5)),
nn.ReLU(),
nn.Linear(int(num_hidden*0.5), num_hidden),
nn.BatchNorm1d(num_hidden),
nn.ReLU(),
nn.Linear(num_hidden, input_size))

self.classifier = nn.Sequential(
nn.Linear(latent_dim, num_hidden_c),
nn.BatchNorm1d(num_hidden_c),
nn.LeakyReLU(),
nn.Dropout(p=0.2),
nn.Linear(num_hidden_c, num_hidden_c),
nn.BatchNorm1d(num_hidden_c),
nn.LeakyReLU(),
nn.Dropout(p=0.2),
nn.Linear(num_hidden_c, num_classes))

# Paramters: Your model has 0.591 mio. params

# Paramters: Your model has 0.824 mio. paramsAE

CLS



Exercise 8: Case Study – Hyper-Parameters
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transform = T.Compose([
T.RandomApply([T.RandomRotation(degrees=30)], p=0.2),
T.RandomApply([T.GaussianBlur(kernel_size=3, sigma=(0.1, 1.5))], p=0.2),
T.RandomApply([T.RandomAffine(degrees=0, translate=(0.08, 0.08))], p=0.2),

])

hparams = {
"n_hidden": 392,
"latent_dim": 32,
"n_hidden_C": 400,
"learning_rate": 5e-4,
"weight_decay": 1e-4,
"epochs_ae": 5,
"epochs_classifier": 50

}Auto-Encoder Reconstructions



Fully Connected
vs 

Convolutional Layers
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Recap: Fully Connected Layers
• Fully Connected (FC) networks / Multi-Layer Perceptron 

(MLP): Receive an input vector and transform it through a 
series of hidden layers (weights & activation functions). 

• Fully Connected layers: Each layer is made up of a set of 
neurons, where each single neuron is connected to all 
neurons in the previous layer
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Computer Vision – MLP 

• Assumption: Input to the network are images 
• Disadvantage: Images need to have a certain 

resolution to contain enough information
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238x238

5x5

Can we reduce the number of 
weights in our architecture?

Image Image



Computer Vision - CNN

• Assumption: Input to the network are images 
• Idea: Sliding filter over the input image (convolution) 

instead of passing the entire image through all  
neurons individually
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Computer Vision - CNN

• Assumption: Input to the network are images 
• Filters: Sliding window with the same filter 

parameters to extract image features 
• Advantage:  Learn translation-invariant “concepts” 

and weight sharing

10



Convolution: Hard-coded
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[-1, -1, -1]
[ 0,  0,  0]
[ 1,  1,  1]

[-1, 0, 1]
[-1, 0, 1]
[-1, 0, 1]

3x3 kernel 3x3 kernel

* *



Convolutional Layers: 
BatchNorm and Dropout
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Fully Connected vs Convolution

http://graphics.stanford.edu/courses/cs468-17-spring/LectureSlides/L10%20-%20intro_to_deep_learning.pdf

• Output Fully-Connected layer: One layer of neurons, independent
• Output Convolutional Layer: Neurons arranged in 3 dimensions 

13



Recap: Batch Normalization

• Batch norm for FC neural networks
– Input size (N, D)
– Compute minibatch mean and variance across N (i.e. we 

compute mean/var for each feature dimension)

14http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture07.pdf



Recap: Batch Normalization

• Batch norm for FC neural networks
– Input size (N, D)
– Compute minibatch mean and variance across N (i.e. we 

compute mean/var for each feature dimension)

http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture07.pdf 15



Spatial Batch Normalization

• Batchnorm for convolutional NN = spatial batchnorm
– Input size (N, C W, H)
– Compute minibatch mean and variance across N, W, H (i.e. 

we compute mean/var for each channel C)

http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture07.pdf 16



Spatial Batch Normalization
Convolutional = spatial BN
– Input size (N, C, W, H)
– Compute minibatch mean and 

variance across N, W, H (i.e. we 
compute mean/var for each 
channel C)

http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture07.pdf 17

Fully Connected
– Input size (N, D)
– Compute minibatch mean and 

variance across N (i.e. we compute 
mean/var for each feature 
dimension)



Other normalizations

http://cs231n.stanford.edu/slides/2018/cs231n_2018_lecture07.pdf 18



Dropout for convolutional layers

• Regular Dropout: Deactivating specific neurons in the 
networks (one neuron “looks” at whole image)

• Dropout Convolutional Layers: Standard neuron-
level dropout (i.e. randomly dropping a unit with a 
certain probability) does not 
improve performance in 
convolutional NN

• Spatial Dropout randomly 
sets entire feature maps to zero

19



Dropout for convolutional layers
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def dropout_mlp():
m = nn.Dropout(p=0.5)
batch_size = 1
inputs = torch.randn(batch_size, 3 * 5 * 5)
outputs = m(inputs)

print(outputs)

tensor([[
-0.89, 0.37, -0.00, 0.00, -0.08, -0.00, 
0.00, -3.55, 0.00, 0.47, -0.00, 5.08, 
-0.00, -0.00, 2.63, 0.00, 0.00, 0.00, 
2.18, 1.92, -0.00, 0.66, 1.96, 0.00, 
-0.00, -0.00, 0.00, 1.31, -1.95, -0.00,
0.00, -4.44, 0.00, -1.07, -0.90, -0.07, 
-3.81, 0.00, 0.23, 2.38,-2.27, -0.51, 
-3.32, -0.00, -0.65, 0.00, -0.00, -0.00, 
-0.00, -0.00, -0.61, 0.00, 0.00, 0.00, 
-1.85, -0.40, 0.00, 0.68, -0.00, -1.96,
-0.00, -1.65, 0.00, -0.66, 3.10, 0.00, 
-0.00, 1.89, 0.00, -1.28,1.62, -0.56, 
-0.00, -0.00, -0.99]])

def dropout_cnn():
m = nn.Dropout2d(p=0.5)
batch_size = 1
inputs = torch.randn(batch_size, 3, 5 * 5)
outputs = m(inputs)

print(outputs)

tensor([[
[ 0.03, 1.40, 1.76, -4.34, -0.63, 
-0.31, 2.80, 2.72, -3.00, 2.67,
-2.31, -3.45, 0.95, 1.18, 1.18, 
-1.05, 0.74, 3.56, 0.55, -1.19,
-0.28, 0.89, -3.36, -2.00, -0.29],

[ 0.00, -0.00, -0.00, -0.00, -0.00, 
0.00, -0.00, -0.00, -0.00, 0.00,
-0.00, 0.00, 0.00, -0.00, -0.00, 
0.00, -0.00, 0.00, 0.00, -0.00,
-0.00, 0.00, -0.00, 0.00, 0.00],

[ 0.00, -0.00, -0.00, -0.00, 0.00, 
0.00, 0.00, 0.00, -0.00, -0.00,
-0.00, -0.00, 0.00, -0.00, -0.00, 
0.00, 0.00, 0.00, -0.00, 0.00,
-0.00, -0.00, 0.00, 0.00, -0.00]]])



Exercise 9: 
Facial Keypoints Detection

21



Submission: Facial Keypoints
Input:

(1, 96, 96) grayscale image
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Output:
(2, 15) keypoint coordinates

Dataset:
- train: 1546 images

- validation: 298 images

CNN



Submission: Metric
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Submission Requirement: Score >= 100

Accuracy (Classification) → Score (Regression)



Good luck &
see you next week 
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